

Thursday 12 June 2014 – Afternoon

A2 GCE MATHEMATICS

4727/01 Further Pure Mathematics 3

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4727/01
- List of Formulae (MF1) Other materials required:

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Scientific or graphical calculator

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- (i) Find a vector equation of the line of intersection of the planes 2x + y z = 4 and 3x + 5y + 2z = 13. [4]
 - (ii) Find the exact distance of the point (2, 5, -2) from the plane 2x + y z = 4. [2]
- 2 Use the substitution $u = y^2$ to find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 2y = \frac{\mathrm{e}^x}{y}$$

for *y* in terms of *x*.

1

- 3 (i) Solve the equation $z^6 = 1$, giving your answers in the form $r e^{i\theta}$, and sketch an Argand diagram showing the positions of the roots. [4]
 - (ii) Show that $(1 + i)^6 = -8i$. [3]
 - (iii) Hence, or otherwise, solve the equation $z^6 + 8i = 0$, giving your answers in the form $r e^{i\theta}$. [3]
- 4 The group G consists of the set $\{1, 3, 7, 9, 11, 13, 17, 19\}$ combined under multiplication modulo 20.
 - (i) Find the inverse of each element. [3]
 - (ii) Show that G is not cyclic. [3]
 - (iii) Find two isomorphic subgroups of order 4 and state an isomorphism between them. [5]
- 5 Solve the differential equation

$$\frac{d^2 y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-x}$$

subject to the conditions $y = \frac{dy}{dx} = 0$ when $x = 0$. [10]

- 6 The line *l* has equations $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-7}{5}$. The plane Π has equation 4x y z = 8.
 - (i) Show that *l* is parallel to Π but does not lie in Π .
 - (ii) The point A(1, -2, 7) is on l. Write down a vector equation of the line through A which is perpendicular to Π . Hence find the position vector of the point on Π which is closest to A. [4]
 - (iii) Hence write down a vector equation of the line in Π which is parallel to l and closest to it. [1]
- 7 (i) By expressing $\sin \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, show that

$$\sin^5 \theta \equiv \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta).$$
^[4]

(ii) Hence solve the equation

$$\sin 5\theta + 4\sin \theta = 5\sin 3\theta$$

1

[3]

[4]

[8]

- 8 *G* consists of the set of matrices of the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where *a* and *b* are real and $a^2 + b^2 \neq 0$, combined under the operation of matrix multiplication.
 - (i) Prove that *G* is a group. You may assume that matrix multiplication is associative. [6]
 - (ii) Determine whether G is commutative.
 - (iii) Find the order of $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. [3]

[2]

END OF QUESTION PAPER

Q	uestio	n Answer	Marks	Guidance	
1	(i)	$\begin{pmatrix} 2\\1\\-1 \end{pmatrix} \times \begin{pmatrix} 3\\5\\2 \end{pmatrix} = \begin{pmatrix} 7\\-7\\7 \end{pmatrix} = 7 \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$	M1 A1		M1 requires evidence of method for cross product or at least 2 correct values calculated
		(eg) $z = 0 \Longrightarrow 2x + y = 4, 3x + 5y = 13 \Longrightarrow x = 1, y = 2$	M1		or any valid point e.g. $(0, 3, -1)$, $(3, 0, 2)$
		$\mathbf{r} = \begin{pmatrix} 1\\2\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$	A1	oe vector form	Must have full equation including 'r ='
		Alternative: Find one point	M1		
		Find a second point and vector between points	M1		
		multiple of $\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$	A1		
		$\mathbf{r} = \begin{pmatrix} 1\\2\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$	A1		
		Alternative: Solve simultaneously	M1	to at least expressions for x,y,z parametrically, or two relationship between 2 variables	
			M1	between 2 variables.	
		Point and direction found	A1		
		$\mathbf{r} = \begin{pmatrix} 1\\2\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$	A1		
			[4]		

Q	Question		Answer	Marks	Guidance	
1	(ii)		$\frac{ 2 \times 2 + 52 - 4 }{\sqrt{2^2 + 1^2 + 1^2}} = \frac{7}{\sqrt{6}}$	M1 A1	Condone lack of absolute signs for M1	2.86 with no workings scores M1
			Alternative: find parameter for perpendicular meets plane and use to find distance	M1	For complete method with calculation errors	look for $\lambda = -7/6$
				[2]		
2			$u = y^2 \Longrightarrow \frac{du}{dx} = 2y\frac{dy}{dx}$	M1	Correctly finds	Or $\frac{dy}{dx} = \frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}$
			so DE $\Rightarrow 2y \frac{dy}{dx} - 4y^2 = 2e^x$	M1	or for complete unsimplified substitution	
			$\Rightarrow \frac{du}{dx} - 4u = 2e^x$	A1		Can be implied by next A1
			$I = \exp \int -4 \mathrm{d}x = \mathrm{e}^{-4x}$	A1ft		Must have form
			- off and a			$\frac{du}{dx} + f(x)u = g(x)$ for this mark and any further marks Can be implied by subsequent work
			$e^{-4x} \frac{du}{dx} - 4e^{-4x} u = 2e^{-3x}$	M1*	Multiples through by IF of form e ^{kx} , simplifying RHS	
			$u e^{-4x} = -\frac{2}{3} e^{-3x} (+A)$	*M1dep*	Integrates	
			$u = -\frac{2}{3}e^x + Ae^{4x}$	M1dep *	Rearranges to make u or y^2 the subject	No more than 1 numerical error at this step
			$y = \sqrt{-\frac{2}{3}e^x + Ae^{4x}}$	A1	Cao	ignore use of '±'
			Alternative from 4 th mark to 6 th mark			
			CF: (u=) Ae^{4x}	A1		
			PI: $u = ke^x$, $\frac{du}{dx} = ke^x$	M1*	PI chosen & differentiated correctly	
			$ke^x - 4ke^x = 2e^x, k = -\frac{2}{3}$	M1 dep*	Substitutes and solves	
				[8]		

Q	uestion	Answer	Marks	Guidance		
3	(i)	$z^6 = 1 \Longrightarrow z = e^{2k\pi i/6}$	M1			
		<i>k</i> = 0,1,2,3,4,5	A1	Oe exactly 6 roots	accept roots 1, -1 given as integers.	
		Diagram	B1	6 roots in right quadrant,		
			B1	correct angles and moduli	as evidenced by labels, circles, or accurate diagram, or by co-ordinates	
			[4]			
3	(ii)	$(1+i)^6 = \left(\sqrt{2} e^{\frac{1}{4}\pi i}\right)^6$	M1	Attempts modulus-argument form, getting at least 1 correct		
		$8e^{\frac{6}{4}\pi i}$	M1	for $(mod)^6$ and arg x 6		
		=-8i	A1	ag	complete argument including start line	
		Alternative:				
		$(1+i)^6 = 1 + 6i + 15i^2 + 20i^3 + 15i^4 + 6i^5 + i^6$	M1			
		=1+6i-15-20i+15+6i-1	M1	no more than 1 term wrong	Sc 2 for only lines 2 & 3correct	
		=-8i	A1	ag		
		Alternative: $(1+i)^2 = 2i$	M1			
		$(1+i)^6 = (2i)^3$	M1			
		=-8i	A1	ag		
			[3]			

Q	Question		Answer	Marks	Guidance	
3	(iii)		$z^6 = -8i \Longrightarrow z = (1+i)e^{2k\pi i/6}$	M1		
			$=\sqrt{2}e^{i\frac{\pi}{4}}e^{2k\pi i/6}$	M1		
			$\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0, 1, 2, 3, 4, 5$	A1	or equivalent k	
			Alternative: $z^6 = 8e^{i\pi(\frac{3}{2}+2k)}$	M1		
			$\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0, 1, 2, 3, 4, 5$	M1 A1		or equivalent: e.g. $\sqrt{2} e^{i\pi(-1/12+k/3)}$
				[3]		accept dissription inodulus

Q	Question	Answer	Marks	Guid	ance
4	(i)		B1	2 or more	Ignore 1
		element (1) 3 7 9 11 13 17 19	B1	4 or more	
		inverse (1) 7 3 9 11 17 13 19	B1	all 7 correct	
			[3]		
4	(ii)	(1 has order 1)			
		9,11,19 have order 2	M1	Correctly identifies order of all elements	Allow one error
		$3^2 = 9 \Longrightarrow 3^4 = 1$ so order 4			
		similarly 7,13,17 order 4	B1	justifies order for at least 1 element of order 4	must show workings towards a^4 for demonstration that these elements are order A^2
		no element of order 8 so not cyclic	A1	www	condone "no generator" in place of "no element or order 8"
			[3]		
4	(iii)		M1	For two sets which both contain "1" and all (4) elements' inverses	
			B1	One subgroup of order 4	
		$\{1,13, 9, 17\}$ and $\{1, 3, 9, 7\}$	A1		
			M1	for correspondence of "their" elements of same order	
		$1 \leftrightarrow 1, 9 \leftrightarrow 9, 3 \leftrightarrow 13, 7 \leftrightarrow 17$	A1	or $3 \leftrightarrow 17, 7 \leftrightarrow 13$	
			[5]		

Question	Answer	Marks	Guidance		
5	AE: $\lambda^2 + 5\lambda + 6 = 0$				
	$\lambda = -2, -3$	B1			
	CF: $Ae^{-2x} + Be^{-3x}$	B1ft			
	PI: $y = a e^{-x}$	B1ft			
	$ae^{-x}-5ae^{-x}+6ae^{-x}=e^{-x}$	M1	Differentiate and substitute		
	2a=1				
	$a = \frac{1}{2}$	A1			
	GS: $(y=)\frac{1}{2}e^{-x} + Ae^{-2x} + Be^{-3x}$	A1ft		ft must be of form " $k e^{-x}$ plus a standard CF form" with 2 arbitrary constants	
	$x = 0, y = 0 \Longrightarrow \frac{1}{2} + A + B = 0$	M1	Use condition on GS	Must have 2 arbitrary constants	
	$y' = -\frac{1}{2}e^{-x} - 2Ae^{-2x} - 3Be^{-3x}$	M1*	Differentiate their GS of form $y = k e^{-x} + A e^{mx} + B e^{nx}$ where k, m, n are non-zero constants and m, n not 1		
	$x = 0, y' = 0 \Longrightarrow -\frac{1}{2} - 2A - 3B = 0$				
	$A = -1, B = \frac{1}{2}$	M1dep*	Use condition and attempt to find A, B		
	$y = \frac{1}{2}e^{-x} - e^{-2x} + \frac{1}{2}e^{-3x}$	A1	WWW	Must have 'y ='	
		[10]			

Q	Question		Answer	Marks	Guidance		
6	(i)		$l \parallel \begin{pmatrix} 2\\3\\5 \end{pmatrix} \Pi \perp \begin{pmatrix} 4\\-1\\-1 \end{pmatrix} \text{ so } \begin{pmatrix} 2\\3\\5 \end{pmatrix} \cdot \begin{pmatrix} 4\\-1\\-1 \end{pmatrix} = 0 \Longrightarrow l \parallel \Pi$	M1	dot product of correct vectors $= 0$		
			$(1, -2, 7)$ on <i>l</i> but $4 \times 1 - 2 - 7 = -1 \neq 8$ so not in Π	M1	substitute point on line into Π and calculate d		
			hence l not in Π	A1	Full argument includes key components	Argument can be about a general point on line	
				[3]			
6	(ii)		$(\mathbf{r} =) \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix}$	B1			
			closest point where meets Π				
			$4(1+4\lambda) - (-2-\lambda) - (7-\lambda) = 8$	M1	parametric form of (x, y, z) substituted into plane		
			$\Rightarrow \lambda = \frac{1}{2}$	Alft			
			$\Rightarrow \mathbf{r} = \begin{pmatrix} 3\\ -\frac{5}{2}\\ \frac{13}{2} \end{pmatrix}$	A1			
				[4]			
6	(iii)		$\mathbf{r} = \begin{pmatrix} 3\\ -\frac{5}{2}\\ \frac{13}{2} \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 3\\ 5 \end{pmatrix}$	B1ft	oe	must have " r ="	
				[1]			

Q	uestior	Answer	Marks	Guid	ance
7	(i)	$2i\sin\theta = e^{i\theta} - e^{-i\theta}$	B1	any equivalent form	If use z, must define it
		$2i\sin n\theta = e^{in\theta} - e^{-in\theta}$			
		$(2i\sin\theta)^5 = \left(e^{i\theta} - e^{-i\theta}\right)^5$			
		$=e^{i5\theta}-5e^{i3\theta}+10e^{i\theta}-10e^{-i\theta}+5e^{-i3\theta}-e^{-i5\theta}$	M1*	binomial expansion	can be unsimplified
		$32i\sin^5\theta = (e^{5i\theta} - e^{-5i\theta}) - 5(e^{3i\theta} - e^{-3i\theta}) + 10(e^{i\theta} - e^{-i\theta})$	M1dep*	grouping terms	Award B1 then sc M1A1 for candidates who omit this stage from otherwise complete argument
		$= 2i\sin 5\theta - 5(2i\sin 3\theta) + 10(2i\sin \theta)$			
		$\sin^5\theta = \frac{1}{16} \left(\sin 5\theta - 5\sin 3\theta + 10\sin \theta\right)$	A1	AG	must convince on the $\frac{1}{16}$ and on the elimination of <i>i</i>
			[4]		
7	(ii)	$16\sin^5\theta - 10\sin\theta = \sin 5\theta - 5\sin 3\theta$	M1*	Attempts to eliminate sin50 and sin30	
		$16\sin^5\theta - 6\sin\theta = 0$	A1		Or $16\sin^5 \theta = 6\sin \theta$
		$\sin\theta = 0, \pm \sqrt[4]{\frac{3}{8}}$	M1dep*	must have 3 values for sin θ	
		$\theta = 0, \pm 0.899$	A1		
			[4]		

(Question	Answer	Marks	Guidance	
8	(i)	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ is identity	B1		
		$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G $	M1 A1	for M1, must at least get matrix in form $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, or state existence of inverse due to non-singularity	
		$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} ac - bd & -bc - ad \\ bc + ad & ac - bd \end{pmatrix} $	M1		
		and $(ac-bd)^{2} + (bc+ad)^{2} = a^{2}c^{2} + b^{2}d^{2} + b^{2}c^{2} + a^{2}d^{2}$	M1 A1	Must not attempt to prove commutativity in (i)	
		$= (a^2 + b^2)(c^2 + d^2) \neq 0$	[6]		
8	(ii)	$ \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} ac - bd & -bc - ad \\ bc + ad & ac - bd \end{pmatrix} $	M1		must also consider matrices reversed, but may be seen in (i)
		$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix}$ so commutative	A1		
			[2]		
8	(iii)	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} $	M1	g^2 must be correct	
		$ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	M1	allow 1 error in getting g^4	
		order 4	A1 [3]		